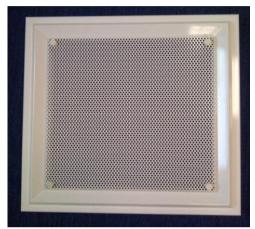


www.wtbs.co.uk

Contents Page

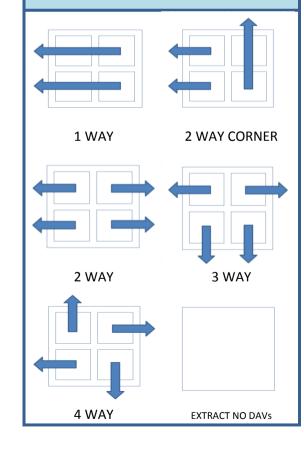
Perforated Supply and Extract Grilles	Page 3
Circular Louvre Faced Diffusers (Small Format)	Page 5
Supply and Extract Air Valves	Page 7
Circular Louvre Faced Diffusers (Large Format)	Page 9
Double Deflection Grilles	Page 10
Egg Crate Grilles	Page 11
External Weather Louvres	Page 13
Contacts Page	Page 17

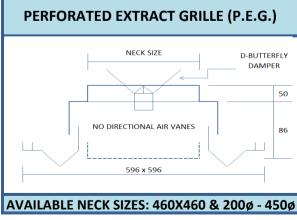

Perforated Supply and Extract Grilles

These grilles are designed to give an even distribution of air in either a 1,2,3 or 4 way pattern by simply adjusting the directional air vanes, hidden behind the thumb screw fixed perforated face.

The supply and extract versions have the same external appearance and a high quality finish which blend neatly into the 600x600 suspended ceilings.

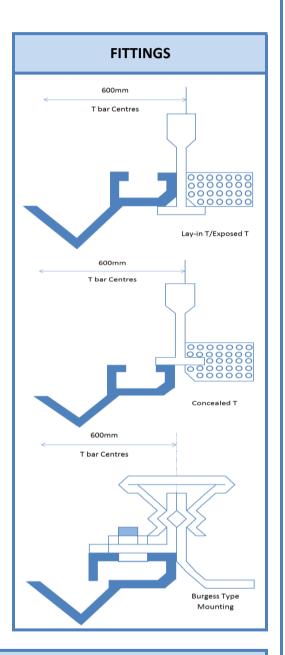

Cleaning the diffusers is made easy by the thumb screw fixed perforated face and demountable directional air vanes, while the frame design protects the surrounding ceiling from unsightly smudging.





DIRECTIONAL AIR VANES PATTERNS

These grilles are suitable for most projects such as Offices, Restaurants, Kitchens etc.

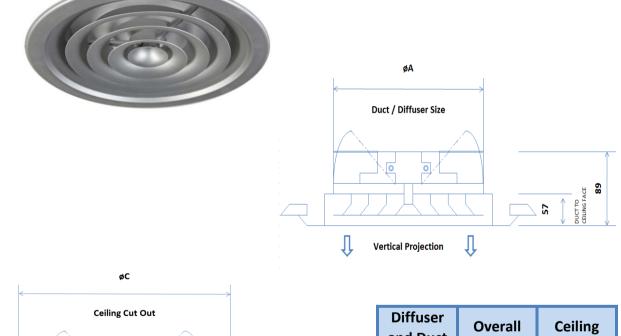

PSG - Supply Diffuser - 300ø Neck. Radius of Diffusion - M (FT)									
Neck	M/S	2	3	4	5				
Velocity	F.P.M.	400	600	800	1000				
4 14/21/	MIN-	0.31-1.07	0.69-1.98	1.22-2.45	1.68-3.5				
4 Way	MAX	1.0'-3.5'	2.25'-6.5'	4.0'-8.0'	5.5'-11.5'				
2 14/21/	MIN-MAX	0.31-0.76	0.45-1.5	0.69-1.98	1.22-2.4				
3 Way	SHORT	1.0'-2.5'	1.5'-5.0'	2.25'-6.5'	4.0'-8.0'				
2 14/21/	MIN-MAX	0.36-1.22	0.99-3.05	1.53-3.5	2.2-3.96				
3 Way	LONG	1.2'-4.0'	3.25'-10.0'	5.0'-11.5'	7.0'-13.0'				
2 Way	MIN-	0.36-1.83	0.61-2.45	1.22-3.5	1.68-4.57				
z vvay	MAX	1.2'-6.0'	2.0'-8.0'	4.0'-11.5'	5.5'-15.0'				
1 Way	MIN-	0.38-2.45	1.83-3.5	3.2-5.49	4.6-7.9				
1 VVay	MAX	1.25'-8.0'	6.0'-11.5'	10.5'-18.0'	15.0'-26.0'				
Pressure	PA	4.25	7.47	16.2	25				
Loss	"W.G.	0.017"	0.03"	0.065"	0.1"				
Noise Level	dB	15	27	35	43				

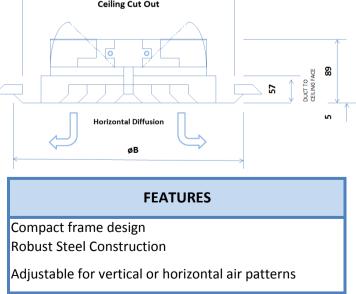
Min & Max radius of diffusion, is measured at 0.75m/s & 0.30m/s terminal velocities when mounted at a 3m ceiling height.

F	PEG - Exhaust Diffuser - 460 x 460 Neck.										
Neck ve	Neck velocity & Pressure Loss										
Neck	M/S	2	4	6	8	10					
Velocity	F.P.M.	400	800	1200	1600	2000					
Pressure	PA	2	5	10	16	25					
Loss	"W.G.	0.008"	0.02"	0.04"	0.064"	0.1"					
Noise Level	dB	-	-	20	32	43					

	PEG - Exhaust Diffuser - 300ø Neck.										
Neck V	elocity 8	k Pressu	re Loss								
Neck	M/S	2	4	6	8	10					
Velocity	F.P.M.	400	800	1200	1600	2000					
Pressure	PA	3	10	15	20	30					
Loss	"W.G.	0.01"	0.04"	0.06"	0.08"	0.12"					
Noise Level	dB	-	-	25	35	43					

ADDITIONAL INFORMATION


All Grilles are finished to Gloss white as standard (for easy cleaning) but any BS colour can be supplied on request. Non standard sizes are available. Details upon request.


Circular Louvre Faced Diffusers (Small Format)

CLFD (SF)s are designed for both supply and exhaust applications requiring compact circular diffusers. Unlike conventional diffusers the CLFD (SF)s have a small overall to neck size ratio. The diffusers are adjustable to produce horizontal or vertical air patterns.

CLFD (SF)s are constructed from steel spinnings retained on aluminium spider braces.

Diffuser and Duct Size ØA	Overall Diameter øB	Ceiling Opening ØC
150	213	247
160	228	252
200	264	287
250	315	337
300	380	356
315	366	402
355	417	442
400	462	487
450	530	555

Supply Horizontal Projection

Radius of Diffusion.

Min - Space covered by one diffuser which results in a mean room air movement of 0.25m/s Max - Space covered by one diffuser which results in a mean room air movement of 0.10m/s

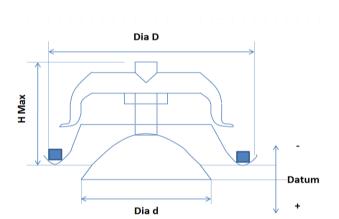
	MC		Air Volume							
	m3/h	65	126	191	252	317				
150	l/s	18	35	53	70	88				
150 Dia	Min-Max (m)	0.5-1.0	0.8-1.5	1.0-2.1	1.5-3.0	2.0-4.0				
Dia	Lw	-	-	18	26	34				
	Ps	2	9	21	37	58				
	m3/h	112	227	338	454	565				
200	l/s	31	63	94	126	157				
Dia	Min-Max (m)	0.5-1.0	0.9-1.8	1.5-3.0	2.0-4.0	2.5-5.0				
Dia	Lw	-	-	21	31	40				
	Ps	2	9	21	37	58				
	m3/h	256	508	763	1016	1271				
200	l/s	71	141	212	282	353				
300 Dia	Min-Max (m)	0.7-1.5	1.4-2.8	2.1-4.2	2.8-5.6	5.0-10				
Dia	Lw	-	18	29	39	46				
	Ps	2	9	21	37	58				
	m3/h	572	1145	1717	2290	2862				
450	l/s	159	318	477	636	795				
Dia	Min-Max (m)	1.3-2.5	2.5-5.0	3.8-7.6	5.0-10	6.0-12				
Dia	Lw	-	21	35	45	53				
	Ps	4	18	41	72	112				
E	xhaust									
	MC		Ai	r Volur	ne					
	m3/h	65	126	191	252	317				
150	l/s	18	35	53	70	88				
Dia	Lw	-	-	18	26	35				
	Ps	3	11	23	38	56				
	m3/h	112	227	338	454	565				
200	l/s	31	63	94	126	157				
Dia	Lw	-	-	23	33	41				
	Ps	4	15	31	51	76				
	m3/h	256	508	763	1016	1271				
300	l/s	71	141	212	282	353				
Dia	Lw	-	17	32	42	50				
	Ps	6	23	49	80	120				
	m3/h	572	1145	1717	2290	2862				
450	l/s	159	318	477	636	795				
Dia	Lw	-	27	42	52	-				
	Ps	10	35	74	120	180				

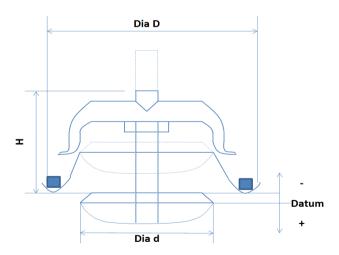
Performance Tables

Supply Vertical Projection

Projection - downward throw to a terminal velocity

v = 0.5 m/s


	МС	Air Volume						
	m3/h	65	126	191	252	317		
150	l/s	18	35	53	70	88		
Dia	Projection (m)	0.9	1.5	2.5	3.5	4.6		
Dia	Lw	-	17	28	36	43		
	Ps	4	14	33	56	91		
	m3/h	112	227	338	454	565		
200	l/s	31	63	94	126	157		
Dia	Projection (m)	1.3	2.1	3	4.3	5.2		
Dia	Lw	-	19	31	39	46		
	Ps	4	17	38	65	105		
	m3/h	256	508	763	1016	1271		
300	l/s	71	141	212	282	353		
Dia	Projection (m)	2	3.1	4.6	6.3	7.8		
Dia	Lw	-	22	34	43	49		
	Ps	5	20	48	80	125		
	m3/h	572	1145	1717	2290	2862		
450	l/s	159	318	477	636	795		
	Projection (m)	3.2	5	7.6	10.1	14.2		
Dia	Lw	-	27	40	48	55		
	Ps	8	32	75	128	200		


Supply and Extract Air Valves

This range of small format supply and extract air terminals are ideally suited for low air volume applications such as domestic residences or hotel rooms.

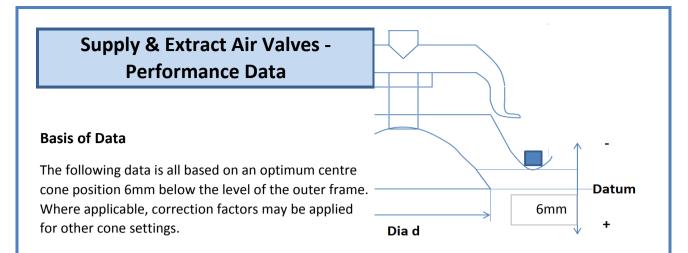
The range comprises a supply valve, two styles of extract valves and an extract fire damper. All models have an aerodynamically profiled, adjustable and lockable centre cone which is designed to provide an easy method of flow regulation, with minimal influence on the noise level.

KE Supply Air Valve

Fi	nis	h	es
Г	1113		CS

Glossy white epoxy stone enamelled paint is offered as a standard finish to provide maximum corrosion resistance in damp environments. A full range of colours are however avaiable in either the BS or RAL ranges.

Size	D	d	Н
KE80	115	77	41
KE100	137	94	47
KE125	161	110	49
KE150	202	135	60
KE160	212	145	60
KE180	249	194	75


VENTILATION PRODUCTS

Size	D	d	Н
KK80	115	61	70
KK100	137	75	70
KK125	161	100	85
KK150	202	120	85
KK160	212	130	85
кк200	248	157	100

Fixing

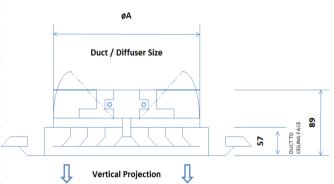
The valves are supplied with an easy fit bayonet collar which can either be rivetted to the duct or screw fixed to the mounting surface.

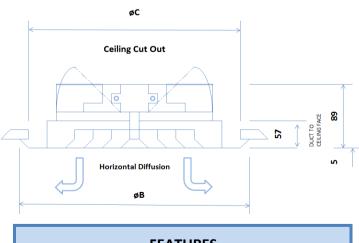
Throws - Jet throws are given in meters to a terminal velocity of 0.2m/s.

			AIR FLOW RATE (I/s)									Cone Position Pressure Factor		
Size	Parameter	10	15	20	25	30	40	50	60	70	80	90	-6	6
	Throw (m)	1.0	1.5	1.9	2.2	-	-	-	-	-	-	-		
KE80	Pressure Loss (Pa)	25	55	95	140	-	-	-	-	-	-	-	9.0	0.4
	NR Level	15	23	30	35	-	-	-	-	-	-	-		
	Throw (m)	0.7	1.1	1.6	1.9	2.2	2.7	-	-	-	-	-		
KE100	Pressure Loss (Pa)	12	25	40	58	90	150	-	-	-	-	-	3.3	0.4
	NR Level	-	-	20	25	35	42	-	-	-	-	-		
	Throw (m)	-	1.1	1.5	1.9	2.1	2.6	3.1	3.4	3.6	-	-		
KE125	Pressure Loss (Pa)	-	-	12	20	30	55	85	120	170	-	-	3.3	0.5
	NR Level	-				-	20	25	30	35	-	-		
KE150	Throw (m)	-	-	0.6	0.9	1.2	1.6	1.9	2.2	2.5	2.7	-		
and	Pressure Loss (Pa)	-	-	10	15	22	40	70	90	130	180	-	2.2	0.4
KE160	NR Level	-	-			-	17	25	32	35	42	-		
	Throw (m)	-	-	0.6	0.8	1.0	1.2	1.6	1.8	1.9	2.1	2.3		
KE200	Pressure Loss (Pa)	-	-	12	17	25	38	60	85	105	140	200	2.9	0.4
	NR Level	-	-			-	15	23	30	33	37	43		

Noise Levels - Noise data is expressed in terms of NR level with a room absorption factor of 8db

	AIR FLOW RATE (I/s)								Cone Position Pressure Factor					
Size	Parameter	10	15	20	25	30	40	50	60	70	80	90	-	+
KE80	Pressure Loss (Pa)	22	50	82	140	-	-	-	-	-	-	-	1.9	0.6
KE0U	NR Level		15	23	30	-	-	-	-	-	-	-		
KE100	Pressure Loss (Pa)	15	32	60	90	120	200	-	-	-	-	-	1.4	0.8
REIOO	NR Level	-	-	15	21	24	30	-	-	-	-	-	1.4	0.0
KE125	Pressure Loss (Pa)	-	18	31	48	70	120	180	-	-	-	-	1.5	_
KE125	NR Level	-	-	-	-	15	21	30	-	-	-	-		-
KE150	Pressure Loss (Pa)	-	-	17	34	42	70	110	170	-	-	-	1.4	
KE160	NR Level	-	-	-	-	-	17	24	30	-	-	-	1.4	-
KE200	Pressure Loss (Pa)	-	-	-	-	-	-	50	75	100	140	170	1.5	0.65
KE200	NR Level	-	-	-	-	-	-	-	22	27	30	35	1.5	0.05


Circular Louvre Faced Diffusers (Large Format)



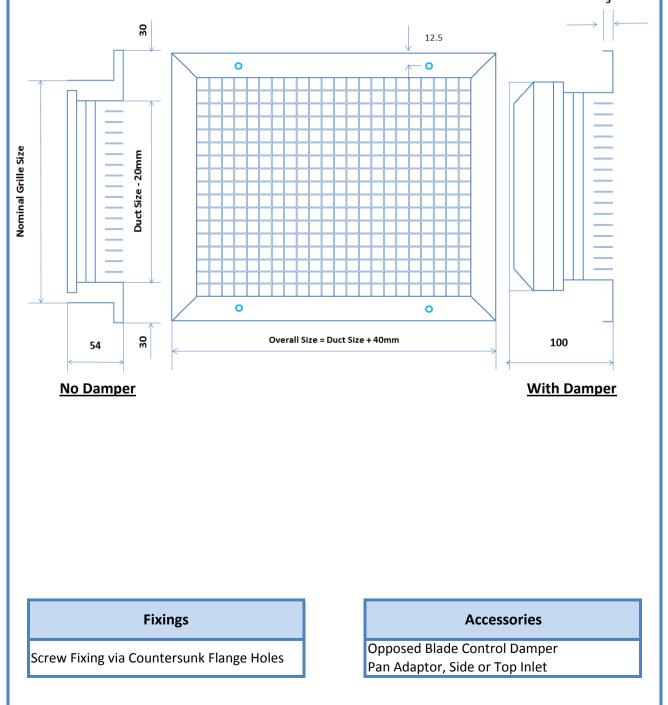
CLFD (LF)s are designed for both supply and exhaust applications requiring compact circular diffusers. The diffusers are adjustable to produce horizontal or vertical air patterns.

CLFD (LF)s are constructed from steel spinnings retained on aluminimum spider braces.

FEATURES

Fully adjustable multi-cone circular ceiling diffuser Polyester powder white to RAL 9010 Screw fixing via diffuser neck. Core can easily be removed.

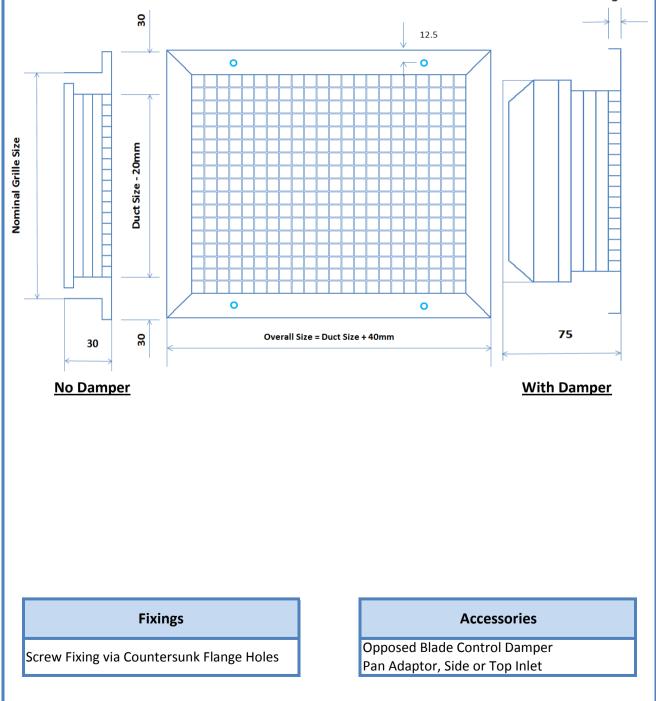
Diffuser and Duct Size ØA	Overall Diameter ØB	Ceiling Opening ØC		
160	340	410		
200	457	527		
250	569	639		
315	610	680		
355	723	793		
400	851	921		
450	1041	1111		
500	1148	1218		
630	1148	1218		


Double Deflection Grilles (DDGs)

Fully adjustable Double Deflection Grille

These grilles are made out of robust Extruded Aluminimum

These Grilles are Satin Silver Anodised and then Polyester Powder White to RAL 9010. Other colours to RAL references are available.


Egg Crate Grilles (ECGs)

Egg Crate Grille

These grilles are made out of robust Extruded Aluminimum

These Grilles are Satin Silver Anodised and then Polyester Powder White to RAL 9010. Other colours to RAL references are available. 5

	e Velocity		1.5	2.0	2.5	3.0	3.5	4.0	5.0
Statio	Pressure	N/M2	4	6	9	13	18	22	35
Meter	Nominal	Rating							
AM2	Size	Nating							
0.017	200x100	Volume	0.026	0.035	0.04	0.05	0.06	0.07	0.09
0.017	150x150	M3/S NC	-	-	-	-	21	25	31
0.024	200x150	Volume	0.038	0.05	0.06	0.07	0.09	0.01	0.12
0.024	350x100	M3/S NC	-	-	-	16	23	26	32
	250x150	Volume	0.05	0.066	0.08	0.1	0.12	0.13	0.17
0.033	200x200	M3/S NC	-	-	-	17	25	27	34
	350x150	Volume	0.064	0.085	0.11	0.13	0.15	0.17	0.21
0.042	250x200	M3/S NC	-	-	-	18	26	28	35
	400x150		0.078	0.104	0.13	0.16	0.18	0.21	0.26
0.051	300x200	Volume	_	-	-	19	26	28	37
	250x250	M3/S NC					20	20	
	300x250		0.01	0.132	0.17	0.2	0.23	0.26	0.33
0.065	500x150	Volume	0.01	0.152	0.17	20	27	30	38
0.005		M3/S NC	-	-	-	20	21	- 50	- 30
	350x200			0.000			0.75	0.00	
	350x250	Volume	0.12	0.161	0.2	0.24	0.28	0.32	0.4
0.079	300x300	M3/S NC	-	-	15	21	28	31	40
	450x200	,							
	400x250	Volume	0.141	0.189	0.24	0.28	0.33	0.38	0.47
0.093	350x300	Volume	-	-	16	22	28	31	41
	500x200	M3/S NC							
	500x250		0.17	0.227	0.28	0.34	0.4	0.45	0.57
0.111	350x350	Volume	-	-	16	23	29	33	42
	400x300	M3/S NC							
	400x350		0.191	0.255	0.32	0.38	0.45	0.51	0.64
0.125	450x300	Volume	0.101	0.255	17	23	30	33	44
0.125	550x250	M3/S NC	-	-	11	23	30	- 35	
	450x350		0.222	0.295	0.37	0.44	0.51	0.59	0.74
0.145	400x400	Volume	0.222	0.255	18	24	30	34	44
0.145	550x300	M3/S NC	-	-	10	24	50	- 54	44
	500x350		0.25	0.333	0.42	0.5	0.59	0.67	0.84
0.164	450x400	Volume	0.25	0.555	19	24	31	35	44
0.104	600x300	M3/S NC	-	-	19	24	51	55	
	500x400		0.283	0.378	0.47	0.57	0.66	0.76	0.94
0.186	450x450	Volume	0.265	0.378	19	25	32	35	45
0.180	700x300	M3/S NC	-	-	19	23	32	35	45
			0.254	0.472	0.50	0.71	0.92	0.04	1 10
0.231	550x450 500x500	Volume	0.354	0.472	0.59	0.71 26	0.83 33	0.94 36	1.18 46
0.231	650x400	M3/S NC	-	-	20	20	33	30	40
	550x400		0.354	0.472	0.59	0.71	0.83	0.94	1.18
0.231	500x450	Volume			20	26	33	36	46
0.201	650x400	M3/S NC			~~	20			
	600x450		0.382	0.51	0.64	0.77	0.89	1.02	1.27
0.251	700x400	Volume	-	-	20	26	33	36	46
	900x300	M3/S NC							
	750x450	Mal	0.453	0.604	0.76	0.91	1.06	1.21	1.51
0.300	800x400	Volume	-	-	22	27	34	38	48
	600x550	M3/S NC							
	800x450	Volume	0.51	0.682	0.85	1.02	1.19	1.36	1.7
0.335	600x600	M3/S NC	-	-	22	27	35	38	50
	900x400								
	900x450	Volume	0.595	0.795	0.99	1.19	1.39	1.59	1.98
0.39	1200x35	M3/S NC	-	-	23	29	35	39	52
	700x600								
	1200x45	Volume	0.776	1.034	1.29	1.55	1.81	2.07	2.5
0.51	900x600	M3/S NC	-	-	24	29	36	40	-
	750x750								
0.57	1200×50	Volume	0.868	1.158	1.45	1.74	2.03	2.32	2.88
	1000×60	M3/S NC	-	15	24	30	37	41	-
	1200x60	Volume	1.045	1.392	1.75	2.09	2.44	2.78	3.5
0.686									

The above performance includes opposed blade dampers in the fully open position.

For Grilles without Dampers multiply the pressure drop by 0.88 and deduct 4 $\ensuremath{\mathsf{NC}}$

External Weather Louvres

Product Range

Small Format Louvres type WTWL38 Large Format Louvres type WTWL50,50-100,75,100 Penthouse Louvres Louvre Doors

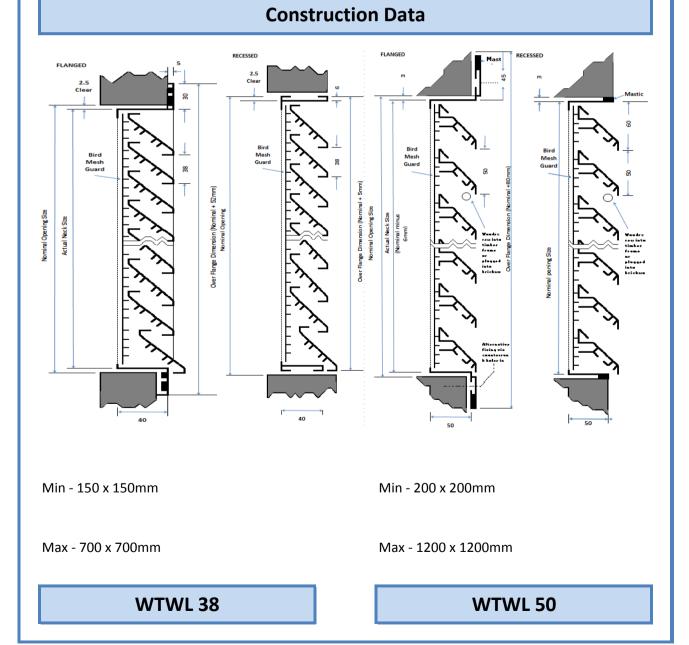
Features

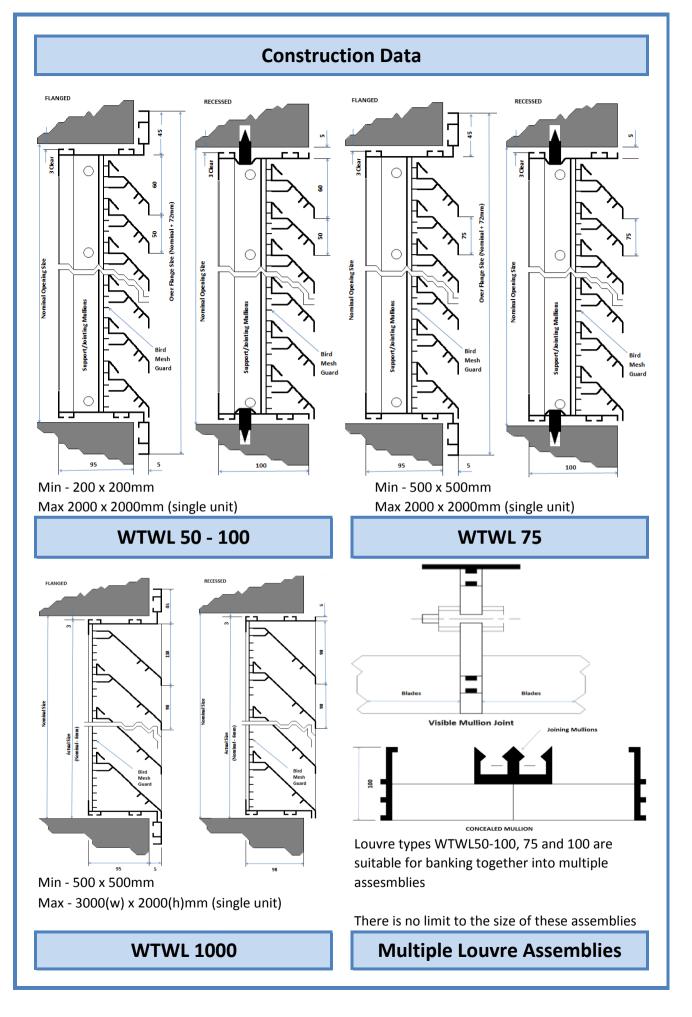
Comprehensive range of louvre sections, 38mm, 50mm, 75mm, 100mm Robust extruded aluminium sections Flanged or recessed louvres available Continous louvre appearance Dummy, blanked and active louvre incorporated into one louvre section Integral bird mesh fitted as standard All shapes and sizes available Suitable for direct coupling with dampers into one assembly

Full range of alternative materials available, glavanised steel, stainless steel and PVC

Applications

Louvres primarily used in ventilation and air conditioning systems to prevent water ingress at air intakes and discharges Natural ventilation openings such as plantrooms, boiler rooms, lift shafts and smoke exhaust Architectural features Screening Louvre doors Penthouse louvres

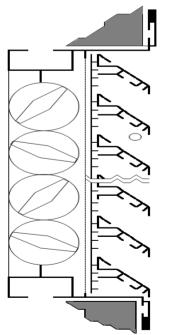

Performance Data


Pressure Loss - Pa						
Velocity	WTWL38	WTWL50	WTWL75	WTWL100		
(m/s)		WTWL 50/100				
1.0	8	15	8	9		
1.5	16	26	16	20		
2.0	29	40	29	36		
2.5	45	58	45	55		
3.0	65	85	65	80		
3.5	88	103	88	108		
4.0	114	114	114	141		
4.5	145	145	145	179		
5.0	179	179	179	220		

Louvre Area (Nett) = <u>Air Volume (m3/s)</u> (m2) Air Velocity (m/s)

Louvre Area (Nett) = Nominal Opening Width x (m2) (Nominal Opening Height - 60)

Recommended air velocity is 2.5m/s



Specification

Description	:-	External Weathe	er Louv	res			
Construction	(÷						
Materials	:-	Blades and casing are constructed from					
		aluminium extru	sion to	BS14	74 havin	g a thi	ckness
		of 1.6mm					
Appearance	(÷	The blades are inclinged at 45 ⁰ and mounted at					
		the following ce	nres &	frame	sizes		
		Blade Type	38	50	50-100	75	100
		Blade Centres	38	50	50	75	90
		Frame Depth	40	50	100	100	*100
		*When mullion join	ting rea	uired f	rame dep	th 140n	nm
Frames	:-	The frames can either be flanged or recessed					
Fixings	(+	Supplied with fla	inges (undrill	ed for fix	ing th	rough
		the neck of the l	ouvre	alterna	ative fixi	ngs av	ailable
		on request					
Options	(÷	Rot proof insect	screer	ı - hea	d/sill se	ction -	
	blanking plates - louvred doors - penthouse						
		louvres - louvre damper assemblies					
Finishes	(+	Mill finish as sta	andard	- poly	ester po	wder c	oating
		to any RAL or BS	4800 0	olour	range		

Construction Data

Direct coupling of low leakage damper and weather louvre to form weather/air infiltration proof combination

Louvre/ Damper Assemblies

Ordering (example)							
1000W X 1000H	Size (nominal opening)						
WTWL 50 - 100	Blade Type						
F	Frame Type: Recessed or Flanged						
IS	Insect Screen						
РН	Product Type: Penthouse or Louvre Door						
RAL9010	Finish						

Specials

Stainless steel, galvanised mild steel and PVC louvres available Lean back louvres for pitched roofs Louvres suitable for severe weather conditions All shapes and sizes availabe including

circular, triangular, rhombus etc.

Contact Page

Company Address

River Street Works River Street Heywood OL10 4AB

Telephone 08448 933 111

Fax 08448 933 112

Website www.wtbs.co.uk

Email Steve <u>sales@wtbs.co.uk</u>

Robert robert@wtbs.co.uk